Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4,11-Bis(4-chlorophenyl)-3,10-bis(2,6-dichlorophenyl)-1,8-dioxa-2,9-diaza-dispiro[4.1.4.2]trideca-2,9-dien-6-one-chloroform-methanol (1/1/0.75)

The title compound, $\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{CHCl}_{3} \cdot 0.75 \mathrm{CH}_{4} \mathrm{O}$, was synthesized by the intermolecular [3+2]-cycloaddition of 2,6dichlorobenzonitrile oxide and 2,5-bis(4-chlorobenzylidene)cyclopentanone. There are three five-membered rings linked by two spiro-C atoms, with approximate C_{2} symmetry. The cyclopentane ring has a twist conformation and the two isoxazoline rings are envelopes.

Comment

Spiro-compounds represent an important class of naturally occurring substances, characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions provide an important route for the construction of spiro-compounds (Caramella \& Grunanger, 1984).

Compound (I) contains three spiro-linked rings, namely a cyclopentanone ring and two isoxazoline rings. The fivemembered cyclopentanone ring has a twist conformation. The two isoxazoline rings are attached to this central ring through spiro-C atoms, giving approximate C_{2} symmetry. Attached to the isoxazoline rings are 4 -chlorophenyl and 2,6 -dichlorophenyl substituents.

The two isoxazoline rings $(A$ and B) are non-planar, with envelope conformations. $\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$ (ring A) and O3-N2-C21-C20 (ring B) form almost exactly planar arrangements; the torsion angles $\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$ of $-2.9(5)^{\circ}$ and $\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 20$ of $-3.0(5)^{\circ}$ are different from that of $-0.9(5)^{\circ}$ in a related structure, viz. 4,11-bis-(4-chlorophenyl)-3,10-bis(2,6-dichlorophenyl)-1,8-dioxa-2,9-diazadispiro[4.1.4.3]tetradeca-2,9-dien-6-one 0.75 -hydrate (Li et al., 2003). Spiro-atom C2 lies 0.168 (3) \AA from the $\mathrm{O} 2 / \mathrm{N} 1 /$ C7/C6 plane in ring A and C5 is 0.345 (3) \AA from the $\mathrm{O} 3 / \mathrm{N} 2 /$ C21/C20 plane in ring B, these two atoms forming the flaps of the envelopes.

The bond lengths $\mathrm{O} 2-\mathrm{N} 1$ and $\mathrm{O} 3-\mathrm{N} 2$ are both 1.410 (4) \AA, comparable to 1.413 (2) \AA in a related structure, viz. 8-methyl-3-phenyl-1-oxa-2,8-diaza-spiro[4.5]dec-2-ene (Feng et al., 1997).

Received 17 February 2003
Accepted 10 March 2003
Online 23 April 2003
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
H -atom completeness 88%
Disorder in solvent or counterion
R factor $=0.056$
$w R$ factor $=0.195$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Figure 1
The molecular structure of (I), drawn with 30% probability ellipsoids.

Figure 2
The crystal structure of (I), viewed along the a axis, omitting the solvent molecules.

The dihedral angle between the two substituted phenyl rings on ring A is $94.9(3)^{\circ}$, while that between the two substituted phenyl rings on ring B is $74.8(3)^{\circ}$. The dihedral angle between the two isoxazoline ring envelope flaps ($\mathrm{C} 6 / \mathrm{C} 2 /$ O 2 and $\mathrm{C} 20 / \mathrm{C} 5 / \mathrm{O} 3$), which form the spiro linkages with the central ring, is $44.5(3)^{\circ}$.

Experimental

A mixture of 2,6-dichlorobenzonitrile oxide (3 mmol) and 2,5-bis(4chlorobenzylidene)cyclopentanone (1.5 mmol) in dry benzene $(30 \mathrm{ml})$ was heated under reflux for 40 h . After evaporation of the solvent, the residue was separated by column chromatography (silica gel, petroleum ether-ethyl acetate $=5: 1$) to give the title compound, (I). M.p. $535-536 \mathrm{~K}$; IR (KBr): $1765(\mathrm{C}=\mathrm{O}), 1595,1581(\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): 1.77-1.81 (2H, m), 1.99-2.02 $(2 \mathrm{H}, m), 5.62(2 \mathrm{H}, s), 7.18-7.37(14 \mathrm{H}, m) ; 20 \mathrm{mg}$ of (I) was dissolved in a mixture of 15 ml chloroform and methanol, and the solution was
kept at room temperature for 10 d , to give colorless single crystals of (I) on evaporation.

Crystal data

$\mathrm{C}_{33} \mathrm{H}_{20} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{CHCl}_{3} \cdot 0.75 \mathrm{CH}_{4} \mathrm{O}$	$Z=2$
$M_{r}=848.61$	$D_{x}=1.456 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.896(3) \AA$	Cell parameters from 983
$b=14.724(4) \AA$	reflections
$c=15.550(5) \AA$	$\theta=3.2-25.4^{\circ}$
$\alpha=111.815(5)^{\circ}$	$\mu=0.69 \mathrm{~mm}^{-1}$
$\beta=101.814(5)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=103.510(5)^{\circ}$	Plate, colorless
$V=1935.5(10) \AA^{\circ}$	$0.28 \times 0.18 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.804, T_{\text {max }}=0.908$
10032 measured reflections

> 6787 independent reflections
> 4617 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.020$
> $\theta_{\max }=25.0^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-16 \rightarrow 17$
> $l=-18 \rightarrow 14$

Refinement

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.084 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.87 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 11$	$1.742(5)$	$\mathrm{O} 2-\mathrm{N} 1$	$1.410(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.192(5)$	$\mathrm{O} 3-\mathrm{N} 2$	$1.410(4)$
$\mathrm{N} 1-\mathrm{O} 2-\mathrm{C} 2$	$109.9(3)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$103.3(3)$
$\mathrm{N} 2-\mathrm{O} 3-\mathrm{C} 5$	$108.9(3)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 6$	$104.5(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{O} 2$	$109.6(3)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 20$	$103.7(3)$
$\mathrm{C} 21-\mathrm{N} 2-\mathrm{O} 3$	$109.1(3)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 2$	$100.1(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 5$	$125.8(4)$		

H atoms were included in the riding-model approximation with displacement parameters related to the atoms to which they were bonded. H atoms were not included for disordered methanol molecules.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT and SHELXTL (Bruker, 1998); program(s) used to solve structure: $\operatorname{SHELXTL}$ (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (1998). SADABS, SMART (Version 5.10), SAINT (Version 4.0) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
Feng, Y. Q., Zhang, X. D., Zhang, W. H. \& Zhou, W. Y. (1997). Chin. J. Appl. Chem. 14, 5-9.
James, D. M., Kunze, H. B. \& Faulkner, D. J. (1991). J. Nat. Prod. 54, 11371140.

Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. \& Mikami, Y. (1991). Tetrahedron, 47, 6617-6622.
Li, X.-F., Feng, Y.-Q., Zhuang, J.-P. \& Hu, X.-F. (2003). Acta Cryst. E59, o247o249.

